
681

0022-4715/02/0200-0681/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 106, Nos. 3/4, February 2002 (© 2002)

Measure Zero Spectrum of a Class of Schrödinger
Operators

Qing-Hui Liu,1 Bo Tan,2 Zhi-Xiong Wen,2 and Jun Wu2

1 Department of Mathematics, Nanjing University, Nanjing, Jiangsu, People’s Republic of
China; e-mail: gzwqhl@263.net

2 Laboratory of Pure and Applied Mathematics, WuhanUniversity, Wuhan 430072, Hubei,
People’s Republic of China; e-mail: tanbo@colmath.whu.edu.cn, zhxwen@whu.edu.cn,
wujunyu@public.wh.hb.cn

Received June 28, 2001; accepted September 24, 2001

We study the measure of the spectrum of a class of one-dimensional discrete
Schrödinger operators Hv, w with potential v(w) generated by any primitive sub-
stitutions. It is well known that the spectrum of Hv, w is singular continuous. (1)

We will give a more exact result that the spectrum of Hv, w is a set of Lebesgue
measure zero, by removing two hypotheses (the semi-primitive of a certain
induced substitution and the existence of square word) from a theorem due to
Bovier and Ghez. (2)
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1. INTRODUCTION

Since the discovery of quasi-crystal, (3) the spectral properties of one-dimen-
sional discrete Schrödinger operator with quasi-periodic potential have
attracted considerable attention during the past two decade. We study the
Schrödinger operator with potential generated by primitive substitution.

Firstly we define sequence generated by primitive substitution (see for
example, refs. 1, 2, 4, and 5 for details).

Let A be an alphabet, t be an primitive substitution over A. Choose
a fixed point z+ of t. Taking any z ¥AZ satisfying zn=z+n for n \ 0 and
defining Wt as the set of accumulation points of {Tnz : n ¥N}, where T is
the left shift on AZ. As claimed in refs. 1, 5, and 6, (Wt, T) is uniquely
ergodic (i.e., there exists only one T-invariant measure) and minimal (i.e.,



the orbit of every w ¥ Wt is dense in Wt), so it is strictly ergodic. Wt is
independent of the selection of fixed point. Suppose that Wt is not finite,
then any w ¥ Wt is not periodic.

We call any w ¥ Wt a sequence generated by primitive substitution t.
By minimality of (Wt, T), the spectrum of Hv, w are the same for all w ¥ Wt,
and we denote the set by St.

Fix an alphabet A and a primitive substitution t over A. Let v be an
injective map from the finite set A to R, w ¥ Wt, we define Hv, w as

(Hv, wf)n=−fn+1−fn−1+v(wn) fn, n ¥ Z, f ¥ l2(Z), (1)

which is called a Schrödinger operator with potential generated by primi-
tive substitution t.

It was proved by Hof, Knill and Simon, (1) that, for any primitive
substitution t, and any w ¥ Wt, St is singular continuous (note that a sin-
gular spectrum may have positive Lebesgue measure. They applied a result
proved by Hof (5) that, for any E ¥ C, the Lyapunov exponent cv, w(E)
exists and are equal for any w ¥ Wt. It is known that, cv, w(E) > 0 for
E ¥ C0St, and cv, w(E) \ 0 for any E ¥ St. However, if cv, w(E)=0 for any
E ¥ St, then by a theorem of Kotani, (7) St is a set of Lebesgue measure
zero.

Let us recall two papers that had ever estimated the related Lyapunov
exponent. It was proved by Bellissard et al. (8) that for w generated by a
class of circle map, which is the usually called Sturmian sequence (some
Sturmian sequences can be generated by invertible substitution over two-
letter alphabet), cv, w(E)=0 for any E ¥ s(Hv, w). For non-periodic w gen-
erated by more general primitive substitution, Bovier and Ghez (2) provided
a way to prove zero Lyapunov exponent for E in the spectrum, if the sub-
stitution satisfies two hypotheses they gave. What we want to do in this
paper is to remove the two hypotheses, so for any non-periodic w gener-
ated by primitive substitution, s(Hv, w) is a set of Lebesgue measure zero.
Moreover, it was proved by Sütö (9) such that St contains no isolated point,
so it is also a Cantor set.

We note that absence of isolated point does not mean that St contains
no point spectrum of Hv, w for any w ¥ Wt. Uniform absence of point spec-
trum for Sturmian potentials is closely studied by Damanik and Lenz
recently (see ref. 10 and reference therein).

Our work is a continuation of Casdagli, (11), Sütö, (12) Bellissard et al., (8)

Bovier and Ghez, (2) in the sense of applying the so called trace polynomial.
Casdagli (11) proved that pseudo-spectrum B. of Schrödinger operator

with potential to be Fibonacci sequence is a Cantor set. B. constructs a
bridge to apply the trace map theory.
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Sütö (12) proved that s(Hv, w) is a Cantor set for some v and w the
Fibonacci sequence. He established a relation between B. and s(Hv, w) by
periodical approach, which can also be extended to any primitive substitu-
tion by choosing a suitable way of generation.

Bellissard et al. (8) proved that s(Hv, w) is a Cantor set of zero Lebesgue
measure, for any w ¥ Wy with y an arbitrary invertible substitution over two
letter alphabet. They applied a result of Kotani, (7) and discussed all
sequence in Wy instead of a single sequence.

Bovier and Ghez (2) gave a general result under two hypotheses:

Theorem A1. Let t be a primitive substitution with non-periodic
substitution sequence on a finite alphabet A. Let v be a non-constant map
from A to R, w a two-side infinite sequence generated by t, and Hv, w be
the Schrödinger operator defined in (1). Suppose there exists a trace map
whose induced substitution f, defined on an alphabet B, is semi-primitive.
Assume further that there exists k <. such that tk(a) contains the word
bb for some b ¥B. Then the spectrum of Hv, w is singular and supported on
a set of zero Lebesgue measure.

Where they applied leading term of trace polynomial to estimate trace,
introduced the semi-primitivity of induced substitution, and applied some
methods of Casdagli, Sütö, and Bellissard et al.

Note that in ref. 2, the generation of a two-side infinite sequence from
a primitive substitution, say t, is different from the generation we give
above, which caused some trouble and is modified in ref. 13. And it may
still happen that the generated sequence wŒ they given in ref. 13 is not in
the set Wt. In fact, it can be proved that the spectrum for this kind of
potential is still Lebesgue measure zero, but we can not expect that it is
equal to St.

They checked the hypotheses of semi-primitivity and existence of
square word for some substitutions, and they found that all the examples
they had checked satisfy the two hypotheses, except that the corresponding
induced substitution of Rudin–Shapiro substitution is not semi-primitive.
But we found that they had made some errors on it. The trace map they
chose is from ref. 14, while some trace polynomial in the trace map has no
leading term for A-degree defined themselves, this may cause trouble in
their estimating. Moreover, we would like to note that since trace map of a
substitution over three or more letter alphabet is not unique, absence of
semi-primitivity for the induced substitution of one trace map associated
with a primitive substitution does not imply that of any other trace map.

To assure the existence of leading term, we will focus our attention on a
class of special trace polynomials, which is called natural trace polynomial
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in this paper. Even the natural trace polynomial may be not unique for
word over three or more letter alphabet. So it may need complex and
tedious calculation to justify whether there exists semi-primitive induced
substitution for a given primitive substitution. In fact we had made out a
trace map associated with Rudin–Shapiro substitution, of which the
induced substitution is semi-primitive. But this is not yet important, since
for any primitive substitution t over any finite alphabet, we will prove in
Section 3 that there exist l > 0 and suitable trace map associated with t l

(note that Wtl=Wt, since their substitution sequences are equal) such that
the corresponding induced substitutions are semi-primitive.

In ref. 2, the existence of square word is used to estimate the Lyapunov
exponent. But it is not a trivial condition, since for substitution sequences
on three or more letter alphabet, the hypothesis may fail. For example
the substitution defined by t(a)=abc, t(b)=ac, t(c)=b is a counter-
example. (15) We will remove the hypothesis of existence of square word
through further analysis.

In this paper, we will not prove the theorems which we needed and
had already been proved in ref. 2. So combining with these theorems, we
prove in Section 4 that

Theorem 1.1. Let t be a primitive substitution with non-periodic
substitution sequence on a finite alphabet A. Let v be an injective map from
A toR,W a set of all two-side infinite sequence generated by t, for anyw ¥ W,
let Hv, w be the Schrödinger operator defined in (1), and let St=s(Hv, w) be
the spectrum ofHv, w. ThenSt is a Cantor set of zero Lebesgue measure.

Note. We need the substitution sequence to be non-periodic since
there are primitive substitutions, say for example t(a)=a(ba)n, t(b)=
b(ab)m, with periodic substitution sequence and the spectrum for such
potential is purely absolutely continuous.

2. NATURAL TRACE POLYNOMIAL

Fix an alphabet A={a1, a2,..., am}. Let K=;m
i=1

m!
i · (m−i)! . Choose a

set B={b1, b2,..., bK} …Ag satisfying that, every word in B contains no
letter in A twice and no word in B is a cyclic permutation of the other.

Let SL(2, R) be the set of all real 2×2 matrices with determinant 1,
Hom(Ag, SL(2, R)) be the set of all the homomorphism maps from Ag

into SL(2, R). Any j ¥ Hom(Ag, SL(2, R)) is determined by matrices
{j(ai)}

m
i=1, and for u=u1u2 · · · ul(ui ¥A),

j(u)=j(u1) j(u2) · · ·j(ul),
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thus j(u) can be seen as a matrix got by changing every letter in u to the
associated matrix. We call j ¥ Hom(Ag, SL(2, R)) a representation.

Let xb1 ,..., xbK be K variables. Let u ¥Ag. A polynomial P ¥ R[xb1 ,...,
xbK] is said to be a trace polynomial of u, if for any representation j, we
have

tr j(u)=P(tr j(b1), tr j(b2),..., tr j(bK)),

where tr(M) denotes the trace of the matrix M. For example, xbi is a trace
polynomial of bi.

Bovier and Ghez (2) introduced A-degree, by define that dA xbi=|bi |,
and for any P, Q ¥ R[xb1 ,..., xbK],

dA(P+Q)=max{dA P, dA Q}, dA PQ=dA P+dA Q.

This kind of degree construct a connection between the length of a word
and the following kind of trace polynomial.

In general we construct trace polynomial by repeatedly using the
following two equation, that is for any matrices A, B ¥ SL(2, R),

tr AB=tr BA, ABA=(tr AB) A+B−(tr B) I (2)

where I is unit 2×2 matrix. We refer to refs. 2 and 4 for detail of the con-
struction. For any word u ¥Ag, we call a trace polynomial of u which can
be got in this way a natural trace polynomial of u. It’s readily to obtain the
following properties of natural trace polynomials.

Property 2.1. Let P be a natural trace polynomial of u ¥Ag, and

P=C
l

i=1
ciPi, ci ] 0

dA Pi \ dA Pi+1, i=1, 2,..., l−1,

where Pi is monomial with coefficient 1. We have

(i) c1=1,

(ii) L[W(P1)] > L[W(Pi)], i=2, 3,..., l,

(iii) L[W(P1)]=L[u],

(iv) dA P=|u|,

where for any v ¥Ag, L(v) is the language (4) of v defined by

L(v)=(|v|a1 , |v|a2 ,..., |v|am ), ai ¥A,
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which is an |A|-dimensional vector, |v|ai is the number of letter ai contained
in v. The ‘‘>’’ between the vectors defined as follows, if x=(x1,..., xm) and
y=(y1,..., ym), then x > y means that xi \ yi and there exists 1 [ j [ m
such that xj > yj.

Note 1. By Property 2.1(ii), we know that the A-degree of P1 is
greater than any other Pi. We call P1 the leading term of P, denoted as P̃.
Moreover, without Property 2.1(ii), some estimating on trace map in ref. 2
may be fail if we use only the fact that dA P1 is greater than any other
dA Pi.

Note 2. For any word u over three or more letter alphabet, even the
natural trace polynomial may be not unique, and their leading term may be
different. For example, let u=abcacb, by the method of constructing
natural trace polynomial, the partitions a(bc) a(cb) and c(a) c(bab) result
different natural trace polynomials

P=xabcxacb+xbxcxbc−x2b−x2c −x2bc+2,

Q=xacxbcxab+x2a+x2ac+x2ab−xaxcxac−xaxbxab−2.

So P̃=xabcxacb and Q̃=xabxacxbc.

Note 3. Not any trace polynomial has above properties. For any
word over two letter alphabet, its trace polynomial is unique and is also a
natural trace polynomial. But for any word over three or more letter
alphabet, its trace polynomial is not unique and may not be natural trace
polynomial. In fact, for three or more letter alphabet A, there exist poly-
nomial L over RK such that for any representation j,

L(tr j(b1), tr j(b2),..., tr j(bK)) — 0,

see ref. 4 for |A|=3 and ref. 16 for |A| > 3. This implies that if P is a trace
polynomial of a word u over A then P+Ln is also a trace polynomial of u
for any non-negative integer n. For sufficiently large n, the A-degree of
P+Ln is not |u|, and P+Ln has no leading term.

3. SEMI-PRIMITIVE OF INDUCED SUBSTITUTION

Let t be a primitive substitution over A. Associate a polynomial map
with t as follows,

F(x)=(Fb1 (x), Fb2 (x),..., FbK (x)), x ¥ RK
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where we choose Fbi to be a natural trace polynomial of t(bi). The poly-
nomial map F is a usually called trace map associated with t. Such trace
map may be not unique, depending on the natural trace polynomials we
choose.

Now we introduce the reduced trace map and induced substitution
and semi-primitivity defined in ref. 2.

Since any Fbi has leading term F2bi of coefficient 1, we can define the
reduced map of F on RK by,

F2(x)=(F2b1 (x), F2b2 (x),..., F2bK (x)), x ¥ RK,

and a induced substitution f of F2 , f : BWBg:

f(b)=W(F2b), -b ¥B,

where W(F2b) is the word over B associated with the monomial F2b, defined
by for any monomial on RK of the form P=xbi1 xbi2 · · · xbil , where
bij ¥B, j=1, 2,..., l,

W(P)=bi1bi2 · · ·bil ¥Bg. (3)

f(b)=W(F2b) can only be determined up to the order of the letters in f(b).
But what we consider is the semi-primitivity of f, which is independent of
the order of letters, and if one induced substitution of F2 is semi-primitive,
so is the other.

Definition. A substitution f over B is said to be semi-primitive if

(i) there exists a subset C …B, such that -b ¥ C, f(b) contains only
letters in C, and f|C is primitive (i.e., there exists k ¥N such that for any
b ¥ C, fk(b) contains all letters in C);

(ii) there exists l ¥N, such that for all b ¥B, f l(b) contain letters inC.

We give a sufficient and necessary condition for a substitution to be
semi-primitive.

Lemma 3.1. A substitution f over an alphabet B is semi-primitive
if and only if there exists a letter b0 ¥B and k > 0 such that for any letter
b ¥B, fk(b) contains b0 and the length of fn(b0) tends to infinity with n.

Proof. It is readily to prove the necessary part, so we prove the suf-
ficient part in the following. Without loose of generality, suppose k=1,
otherwise we can consider fk.
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For any integer n and b ¥B, let N(b, n) be the number of b contained
in the word fn(b0), i.e.,

N(b, n) :=|fn(b0)|b.

The number N(b, n) is increasing with n. Since b0 is contained in f(b0),
fn(b0) is a subword of fn+1(b0). Let

C :={b ¥B : lim
nQ.

N(b, n)=.}.

Then we have

(a) C is not empty, since the length of fn(b0) tends to infinity with n;
(b) For any c ¥ C, f(c) contains only letters in C: suppose that a

letter b ¥B is contained in f(c), then N(b, n+1) \N(c, n), so b ¥ C;
(c) There exists l > 0 such that for any b ¥B, f l+1(b) contains all

letters in C. The reason is that there exists l > 0 such that f l(b0) contains
all letters in C, and f l(b0) is a subword of f l+1(b).

(a), (b), and (c) implies that f is semi-primitive. L

It is a direct corollary of the lemma that the induced substitution cor-
responding to a primitive substitution over two-letter alphabet (say A=
{a, b}) is semi-primitive, since we only need to put b0=ab (in this case
B={a, b, ab}). But for three or more letter alphabet, it is not so obvious.
We prove the following theorem by choosing suitable trace map associated
with primitive substitution.

Theorem 3.2. If t is primitive, then there exists l ¥N and a trace
map associated with t l, such that the corresponding induced substitution is
semi-primitive.

Proof. Since t is primitive, there exists an integer t such that for
any a ¥A, t t(a) contains at least two a’s.

We choose a suitable trace map associated with t2t.

(i) Since t t(a) contains at least two a, we can write t t(a)=aw1aw2,
where w1, w2 ¥Ag. We fix a natural trace polynomial Paw1 of aw1, and fix a
letter b0 ¥B which is contained in the word W(P̃aw1 ) ¥Bg.

(ii) For any b ¥B, since t t(b) contains at least one a, t2t(b) contains
aw1a, then we can choose a cyclic permutation of t2t(b) of the form
aw1awb. Since for any representation j,

tr j[t2t(b)]=tr j(aw1awb)

=tr j(aw1) tr j(awb)+tr j(w1wb)− tr j(w1) tr j(wb)
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we choose natural trace polynomials Pawb , Pw1wb , Pw1 , Pwb of the words awb,
w1wb, w1, wb respectively, then

Fb :=Paw1Pawb+Pw1wb −Pw1Pwb

is a natural trace polynomial of t2t(b). Thus we get a trace map F asso-
ciated with the substitution t2t, and the reduced map F2 of F with

F2b=P̃aw1 P̃awb .

Set an induced substitution of F2 by

f(b)=W(P̃aw1 ) W(P̃awb )=Waw1W(P̃awb ). (4)

For any b ¥B,W(P̃aw1 ) is a subword of f(b), and so b0 is contained in f(b).
Since L[fn(b0)]=L[t2tn(b0)], the length of fn(b0) as a word in Bg also

tends to infinity with n. So according to Lemma 3.1, f is semi-primitive. L

4. PROOF OF THEOREM 1.1

Now to prove Theorem 1.1, by the results proved by Bovier and
Ghez, (2) we only need to get rid of the condition of having a square word
from Theorem A1.

The condition of having a square word is only used by Bovier and
Ghez (2) to show that whenever the traces diverge more slowly than expo-
nential, then so does the norm of the transfer operator. In fact, if there
exists k > 0, such that tk(a) contains square word, i.e., tk(a)=uw2v, then

||j(tn(a))|| [ |tr j(tn−k(w))| ||tn−k(uwv)||+||tn−k(uv)||. (5)

It is this equation that implies that whenever the traces diverge more slowly
than exponential, then so does the norm of the transfer operator.

As stated in Section 1, the existence of square word in the substitution
sequence could fail, thus we can not use Eq. (5) to get the desired result
directly. But we have the following facts. By the primitivity of t, there
exists k > 0 such that tk(a) contains at least two a’s, then tk(a) can be
written as uawav, by Eq. (2) we have that

||j(tn(a))|| [ |tr j(tn−k(aw))| ||tn−k(uav)||

+||tn−k(uwv)||+|tr j(tn−k(w))| ||tn−k(uv)||,
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this equation also implies that whenever the traces diverge more slowly
than exponential, then so does the norm of the transfer operator. So
Theorem A1 is also valid if we get rid of the condition of having square
word.

Let t be a primitive substitution with non-periodic substitution
sequence on a finite alphabet A. By Theorem 3.2, there exists an integer
l > 0 and a trace polynomial of t l such that the induced substitution is
semiprimitive. Then along the line of proof of Theorem A1 in ref. 2, getting
rid of the condition of having square word we prove Theorem 1.1.
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